KBA-231226181840
1. Tatūnga Taiao
1.1. Tāutahia te taraiwa Nvidia me te CUDA
1.2. Tāutahia te Whare Pukapuka Python e Pa ana
python3 -m pip tāuta -whakahou -kaore e whakauruhia te pip
python3 -m pip tāuta –ignore-installed gdown
python3 -m pip tāuta -kaore i whakauruhia opencv-python
python3 -m pip tāuta –ignore-installed torch==1.9.1+cu111 torchvision==0.10.1+cu111 torchaudio==0.9.1 -f https://download.pytorch.org/whl/torch_stable.html
python3 -m pip tāuta –ignore-installed jax
python3 -m pip tāuta –ignore-installed ftfy
python3 -m pip tāuta –whakaarohia te torchinfo kua whakauruhia
python3 -m pip tāuta –ignore-installed https://github.com/quic/aimet/releases/download/1.25.0/AimetCommon-torch_gpu_1.25.0-cp38-cp38-linux_x86_64.whl
python3 -m pip tāuta –ignore-installed https://github.com/quic/aimet/releases/download/1.25.0/AimetTorch-torch_gpu_1.25.0-cp38-cp38-linux_x86_64.whl
python3 -m pip tāuta –ignore-installed numpy ==1.21.6
python3 -m pip tāuta -kaore i whakauruhia te psutil
1.3. Clone aimet-model-zoo
git clone https://github.com/quic/aimet-model-zoo.git
cd aimet-model-zoo
git checkout d09d2b0404d10f71a7640a87e9d5e5257b028802
kaweake PYTHONPATH=${PYTHONPATH}:${PWD}
1.4. Tikiake Set14
wget https://uofi.box.com/shared/static/igsnfieh4lz68l926l8xbklwsnnk8we9.zip
unzip igsnfieh4lz68l926l8xbklwsnnk8we9.zip
1.5. Whakakē raina 39 aimet-model-zoo/aimet_zoo_torch/quicksrnet/dataloader/utils.py
huri
mo img_path i glob.glob(os.path.join(test_images_dir, “*”)):
ki
mo img_path i glob.glob(os.path.join(test_images_dir, “*_HR.*”)):
1.6. Whakahaerehia te aro mātai.
# rere i raro i YOURPATH/aimet-model-run
# Mo te quicksrnet_small_2x_w8a8
python3 aimet_zoo_torch/quicksrnet/evaluators/quicksrnet_quanteval.py \
–model-config quicksrnet_small_2x_w8a8 \
–raunga-raunga ../Set14/image_SRF_4
# Mo te quicksrnet_small_4x_w8a8
python3 aimet_zoo_torch/quicksrnet/evaluators/quicksrnet_quanteval.py \
–model-config quicksrnet_small_4x_w8a8 \
–raunga-raunga ../Set14/image_SRF_4
# Mo te quicksrnet_medium_2x_w8a8
python3 aimet_zoo_torch/quicksrnet/evaluators/quicksrnet_quanteval.py \
–model-config quicksrnet_medium_2x_w8a8 \
–raunga-raunga ../Set14/image_SRF_4
# Mo te quicksrnet_medium_4x_w8a8
python3 aimet_zoo_torch/quicksrnet/evaluators/quicksrnet_quanteval.py \
–model-config quicksrnet_medium_4x_w8a8 \
–raunga-raunga ../Set14/image_SRF_4
me whakaaro ka whiwhi koe i te uara PSNR mo te tauira whakatairite. Ka taea e koe te whakarereke i te tauira-whirihora mo te rahinga rereke oQuickSRNet, ko te whiringa ko te underaimet-modelzoo/aimet_zoo_torch/quicksrnet/model/model_cards/.
2 Tāpiri Papaki
2.1. Whakatuwheratia "Kaweake ki ONNX Steps REVISED.docx"
2.2. Tīpoka git commit id
2.3. Waehere Wāhanga 1
Tāpirihia te 1. waehere katoa i raro i te raina whakamutunga (i muri i te raina 366) aimet-model-zoo/aimet_zoo_torch/quicksrnet/model/models.py
2.4. Wāhanga 2 me 3 Waehere
Tāpirihia te 2, 3 waehere katoa i raro i te rarangi 93 aimet-model-zoo/aimet_zoo_torch/quicksrnet/evaluators/quicksrnet_quanteval.py
2.5. Tawhā Matua i roto i te Tauira uta_mahi
tauira = uta_tauira(MODEL_PATH_INT8,
MODEL_NAME,
MODEL_ARGS. tiki(MODEL_NAME). tiki(MODEL_CONFIG),
use_quant_sim_model=Tono,
encoding_path=ENCODING_PATH,
quantsim_config_path=CONFIG_PATH,
calibration_data=IMAGES_LR,
use_cuda=Tono,
before_quantization=Tono,
convert_to_dcr=Tono)
MODEL_PATH_INT8 = aimet_zoo_torch/quicksrnet/model/weights/quicksrnet_small_2x_w8a8/pre_opt_weights
MODEL_NAME = TereSRNetSmall
MODEL_ARGS. tiki(MODEL_NAME). tiki(MODEL_CONFIG) = {'tauine_factor': 2}
ENCODING_PATH = aimet_zoo_torch/quicksrnet/model/weights/quicksrnet_small_2x_w8a8/adaround_encodings
CONFIG_PATH = aimet_zoo_torch/quicksrnet/model/weights/quicksrnet_small_2x_w8a8/aimet_config
Tena koa whakakapihia nga taurangi mo nga rahi rereke o QuickSRNet
2.6 Tauira Rahi Whakarerekētanga
- "whakauru_ahua" i roto i te aimet-model-zoo/aimet_zoo_torch/quicksrnet/model/model_cards/*.json
- I roto i te mahi load_model(…) i roto i te aimet-model-zoo/aimet_zoo_torch/quicksrnet/model/inference.py
- Tawhā o roto mahi export_to_onnx(…, tāuru_teitei, tāuru_whānui) mai i “Kaweake ki ONNX Steps REVISED.docx”
2.7 Re-Run 1.6 ano mo te kaweake tauira ONNX
3. Tahuri ki SNPE
3.1. Tahuri
${SNPE_ROOT}/bin/x86_64-linux-clang/snpe-onnx-to-dlc \
–input_network model.onnx \
–quantization_overrides ./model.encodings
3.2. (Kōwhiringa) Tangohia anake te DLC ine
(kōwhiringa) snpe-dlc-quant –input_dlc model.dlc –float_fallback –override_params
3.3. (NUI) Ko te ONNX I/O kei te raupapa o te NCHW; Ko te DLC kua hurihia kei te raupapa NHWC
Tuhinga / Rauemi
![]() |
Ko te Tuhituhi Taputapu Utauta Tino Aimet Qualcomm [pdf] Tohutohu quicksrnet_small_2x_w8a8, quicksrnet_small_4x_w8a8, quicksrnet_medium_2x_w8a8, quicksrnet_medium_4x_w8a8, Aimet Tuhituhi Taputapu Taputapu, Tuhituhi kete Utauta Pai, Tuhinga Taputapu |